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Abstract —Two transitions between unilateral and bilateral fin-line

mounted back to back show unique features for impedance transformation.

The series reactance of the equivalent T-circuit are theoretically shown to

be capacitive. This is exploited by designing a broad-band switch with two

p-i-n diodes. Its isolation is about 20 dB throughout the Ku-band.

I. INTRODUCTION

T

HE BASIC building blocks of fin-line circuits are

various discontinuities in the slot width. Impedance

transformation is usually performed with either one or two

steps in the slot width [1]. With two cascaded steps one can

generate either a notch or a strip. Almost all known

components are realized in this way. These structures can

be analyzed by combining an eigenmode with a modal

analysis [2]. The procedure has been carried thrrough in [1].

We will apply this method here to new configurations.

The structures for impedance transformation to be de-

scribed show both electrical and practical advantages over

the known ones, Their slot patterns are sketched in Fig. 1.

These structures consist of two cascaded transitions be-

tween unilateral and bilateral fin-lines of equal slot widths.

The slot may be located either symmetrically or unsymmet-

rically with respect to the waveguide axis. A large range of

impedances can be generated by varying two geometrical

parameters: the common slot width 2,s and the length 21 of

the middle section. Such a line section can therefore be

used in either of two ways: as an impedance transfortner or

as a semiconductor device mount. In the latter application,

the circuit patterns show a practical advantage over con-

ventional ones. While the circuit at the front side which

contains the semiconductor devices is protected against

damage, one can conveniently alter the transforming sec-

Manuscript received March 10, 1982; revised June 4, 1982.
K. Schiinemann is with the Institut fur Hochfrequerrztechnik, Tech-

nische Universitat Braunschweig, D-3300 Braunschweig, West Germany.

H. El Hennawy is with Ain Shams University, Cairo, Egypt.

front side ‘////,
metal 1isaticm cm

back side h\\\\\~

slot

Fig. 1. Slot patterns of transitions between unilateral and bilateral
fin-tines.

tion on the back side of the substrate in order to optimize

performance. In addition, there are, however, even electri-

cal advantages over the usual notch and strip patterns,

which will be derived in the following.

II. MODAL ANALYSIS

In order to analyze the structures shown in Fig. 1, one

must know both the propagation constants and the field

distributions of the hybrid eigenmodes of unilateral and

bilateral fin-lines. The problem has been solved by a num-

ber of authors. We have adopted the spectral-domain

technique presented, e.g., in [3] and modified it to de-

termine the eigenmodes of both unilateral and bilateral

fin-line in a unified form. The unilateral fin-line case is

treated in Appendix I, while the results for the bilateral

fin-line will be presented elsewhere [4]. The notation is the

same for both cases. The key to an efficient eigenmode

evaluation is a suitable choice of the system of basis

functions into which the slot fields must be expanded. This

has been discussed in [3]. We have used a fifth-order

polynomial modified by a square-root term in order to take

the edge condition correctly into account. Thus it was

possible to calculate up to 30 eigenmodes with sufficient

accuracy.

The modal analysis for computing the characteristics of

an abrupt transition between a bilateral and a unilateral

fin-line shall be briefly described (compare also to [5]). As
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shown in the slot patterns of Fig. 1, both the slot widths

and the location of the slot above the broad wall of the

waveguide are assumed to stay constant at both sides of

the junction. The electric and magnetic fields of the i th

eigenmode are written as

hl(x, y,z)=ai~. (x, y)e*Ylz (1)

with @iand El the transverse vector functions of the electric

and magnetic field, respectively. Denoting the transverse

field distribution of the left waveguide a at the junction

(z= O) by ~a, H=, and expanding it in terms of the eigen-

modes of that waveguide, reads

Ea= (l-t p)ali?a, + ~ aii7ai
1=2

Ra= (l-p) alEal– ~ a,&. (2)
i=2

Similarly, one writes for waveguide b

(3)

p means reflection coefficient of the incident mode (i= 1),

sJk are the scattering coefficients of the next discontinuity y

located at z >0 in waveguide b.

In the following, we will address the so-called’ boundary

reduction problem’ (terminology taken from [2]), i.e., the

cross section of waveguide a is larger than that of wave-

guide b. In our case, the former is a unilateral and the

latter a bilateral fin-line. The boundary enlargement prob-

lem can be treated in the same way as described below, if

the subscripts a and b in (2) and (3) are interchanged.

Equations (2) and (3) are used to formulate the boundary

conditions at the junction, which are manipulated in the

following way. The cross product of the electric field in (2)

with ~a~ is taken and integrated over the cross section of

waveguide a. For the unknown field on the left-hand side,

~b is inserted from (3). Similarly, the cross product of the

magnetic field in (2) with ~~~ is taken and integrated over

the cross section of waveguide b. For the unknown field on

the left-hand side, ~b is inserted from (3). One obtains

w

+~ai
[

~~, X 60W. u=dx dy
,=2 (a)

co

Z[(J

—
—— b] ~bl X ho~ . U=dx dy

,=1 (b)

w

+ ~ ‘]k
J

Fbk X ~am - uzdx dy)1 (4a)
k=l (b)

(l-~)al~b~nx~a,.uzdxdy

w-x[(/ —— bj Fbn X hbj . U=dx dy
,=1 (b)

)1-f $jk{b)~~n X 6bk.U= dx dy . (4b)
k=l

u= means unit vector in the z-direction. Because ~~ exists

on the common aperture only and vanishes elsewhere, the

integrals on the right-hand side of (4a) must only be taken

over the cross section of waveguide’ b‘. These integrals can

be solved once the eigenmodes have been formulated. The

solutions are listed in Appendix H for the generaJ case of a

junction between two unilateral fin-lines. If a junction

between a unilateral and a bilateral fin-line is to be treated,
one must only omit some of the expansion coefficients.
(A~2J = SJ2J= BJ2) = ~J2) = O for an unsymmetrical mode

in bilateral fin-line, A~2) = ~~2) = ~~z) = ~~2) = O for a sym-

metrical mode.)

In order to solve (4) for the amplitudes of the excited

modes, one must first determine the scattering coefficients

Syk. For a single transition, waveguide b may be assumed to

be terminated in a matched load: Sjk = O. For two transi-

tions in cascade, we can take advantage of the symmetry of

the structure with respect to the plane z = 1. The equivalent

circuit can then be found from both an even and an odd

excitation of both ports, so that Sjk = O for j * k and

Sjj= (1– ybj)/(l+ yb, ) = Aexp(-2j~bJl). (5)

ybj is the normalized input admittance of the jth mode in
waveguide b measured at z = O, and Pb, means propagation

constant of this mode.

We are now in a position to solve the system of equa-

tions (4). It is convenient to normalize the wave amplitudes

on a,. Setting

aj = a,/al, b;= bl/al, I~mb, = Iamb, /( FamFbj) (6)

with the I‘s and F‘s taken from Appendix II we obtain for

the case that the exciting wave a, impinges on waveguide b

from waveguide a

L L

1. L

These relations are valid for the boundary enlargement

problem, i.e., that waveguide a is a bilateral and waveguide
b a unilateral fin-line. If a wave al impinges from b on a,
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Fig. 2. Equivalent circuit of a single transition (port 1 = bilateraf, port
2 = tmilateraf fin-line).

one obtains for the boundary reduction problem

L L

%bm

L L

pl;nbl + Z a~%bz + Z ~;(l - s,,)&= ~:.b,- (8)

1=2 ~=1

The infinite series are truncated at i = j = L, thus taking L

modes in each waveguide into account. Then (7) or (8)

generate 2L linear equations for 1 + (L – 1) + L unknowns.

A single transition from unilateral to bilateral fin-line is

characterized by an equivalent circuit shown in Fig. 2

whose elements can be computed from the input admit-

tances at both ports. Two cascaded transitions are rep-

resented by a T-equivalent circuit with series reactance X,C

and shunt reactance ( XOC– X, C)/2. (Subscripts sc denote

a short circuit, subscripts oc an open circuit at the symme-

try plane z = 1.)

III. PERFORMANCE OF TRANSITIONS

The modal analysis has been applied to a single transi-

tion between unilateral and bilateral fin-line and to the

cascaded transitions sketched in Fig. 1. Some results for

the elements of the equivalent circuit of a single transition

(Fig. 2) are shown in Fig. 3. (The turns ratio of the ideal

impedance transformer has been omitted because it is very

close to unity.) The general shape of the three remaining

elements (note that subscript 1 refers to the bilateral fin-line

port) can be explained by assuming an electric field di-

rected perpendicularly through the dielectric substrate from

front to back fin of the bilateral fin-line. This field can of

course exist only in the immediate vicinity of the transition

between the two fin-lines. For larger slot widths (2.s ), the

substrate thickness (2d ) is much smaller than (2.s ). Hence,

a capacitive series reactance Xl appears in the equivalent

circuit. The shunt susceptance B is small because the slot

width approaches the waveguide height (2b ). The electric
field concentration in the slot increases with decreasing

(2s). Hence, B must increase monotonically and Xl must

increase, too. Finally, Xl becomes inductive because of an

increasing magnetic field concentration which is due to a

surface current filament on the transversely oriented fin

edge of the bilateral fin-line.

The most important result is that there may exist a

capacitive series reactance. It will be shown below that the

potentials for impedance transformation in fin-lines will be

largely amplified by this.

The equivalent circuit elements of two cascaded transi-

tions are shown in Fig. 4 versus the length of the middle
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Fig. 3. Elements of the equivalent circuit of a single transition (Fig. 2)
versus slot width (2s ) normalized against waveguide height (2 ~). The
elements are normalized against the wave impedance of the adj scent
port. (Frequency 30 GHz, WR-28 waveguide with 2a= 7.112 mm,
2 b = 3.556 mm, symmetrically located slot of width 2s, RT-duroid

5880 substrate of tfuckness 2d = 0.254 mm and relative dielectric
constant e,= 2.22.)
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Fig. 4 (a) Elements of the equivalent T-circuit of a section of bilateraf
fin-line (length 21) embedded mto a unilateral fin-line. The elements
are normalized against the wave impedance of the unilateral fin-free. Ao
means free-space wavelength. (Parameters as m Fig. 3 with 2s = 0.4
mm.) (b) Elements of the equivalent T-circuit of a section of unilateral
fin-hne embedded mto a bilateral fin-line. (Normafization against bi-
lateral fin-line impedance; parameters as in Fig. 4(a).)

section. The slot width is relatively small: s = 0.2 mm. The

shape of the curves can be explained by cascading the

equivalent circuits of two single transitions. (They have,

however, been computed by taking higher order mode
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Fig. 5.
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(a) T-circuit elements as in Fig. 4(a) with 2s = 1.0 mm. (b)
T-circuit elements as in Fig. 4(b) with 2s = 1.0 mm.

coupling into account.) A significant feature is the parallel

resonant behavior of the series reactance for small lengths

1, which can be explained if the two cascaded transitions

are separately regarded (i.e., if higher order mode coupling

between them is neglected). The series reactance is calcu-

lated for odd excitation so that one port of the equivalent

circuit of Fig. 2 is terminated in a short-circuited transmis-

sion line of length 1. Hence, the parallel resonant behavior

of X~C is due to B resonating with X1 and the input

reactance of the transmission line.

The series reactance is capacitive for larger lengths 1.

This is of great importance for circuit design because there

is no other discontinuity y known showing a capacitive series

reactance. (Both notch and strip show an inductive series

reactance [1].) This unique feature of a double transition

between unilateral and bilateral fin-line offers an interest-

ing alternative in the design of p-i-n-diode switches as will

be illustrated below. It can, however, be observed only for

small slot widths. The series reactance is inductive, if s

exceeds a certain limit. This is illustrated by the results

shown in Fig. 5. Instead of a parallel resonance, X,C now

shows series-resonant behavior. This can again be ex-

plained by means of the simplified equivalent circuit. The

shunt susceptance B of a single transition can now be

neglected (compare with Fig. 3!), so that Xl is in series with

the short-circuited transmission line of length 1(odd excita-

tion). Hence, X,e models a series circuit. The shunt element

XP is, however+ always capacitive.

IV. DESIGN OF A BROAD-BAND SWITCH

The unique characteristic of a section of bilateral fin-line

embedded into a unilateral fin-line shall now be utilized to

design a broad-band switch with two p-i-n diodes. The

diodes are usually bonded across a narrow fin-line slot [7]

within a distance of about a quarter of a wavelength in

order to obtain broad-band performance. Then one needs

three diodes in order to guarantee 20-dB isolation over a

waveguide band [7]. Using the matching structures dis-

cussed above will, however, reduce the number of diodes

for nearly *e same performance to 2.

A p-i-n diode can approximately be characterized by its

package inductance in on-state and by its i-layer capaci-

tance shunted by the package capacitance in off-state. The

on-state of the diode normally corresponds to the isolation

state of the switch (diode mounted in shunt to the

transmission line). Hence, the package inductance must be

carefully tuned in order to enhance isolation. Guidelines

for designing a broad-band switch with two p-i-n diodes in

shunt are derived in detail in [8]. Both diodes should be

about a quarter of a wavelength spaced. Broad-band per-

formance demands to compensate for the package induc-
tances at two different frequencies fa and f~, which are

related to the upper and lower corner frequencies ~1, ~2 via

[8]

f.,,= [(q)2 * /=]”2. (9)

The two sections of bilateral fin-line which are used to tune

the diodes in their on-state must, hence, show different

lengths. The slot pattern of the switch and its equivalent

circuit are sketched in Fig. 6. One recognizes that a capaci-

tive series reactance XSCis necessary in order to fulfill the

said tuning condition. (Hence, neither a notch nor a strip

can be used instead.) Following the design rules given in

[8], the equivalent circuit should present a bandpass char-

acteristic with, e.g., a maximally flat response in the trans-

mission state. This is achieved for X= 2B with X and B

defined in Fig. 6. Thus, the length of the unilateral fin-line

between both diode mounts is fixed. In the isolation state,

series resonance is claimed at f= and fb, respectively. This

determines the lengths of the two mounting sections. The

common slot width should correspond to the physical size

of the diode package.

We have realized a Ka-band switch with two p-i-n diodes
4701 (Microwave Associates). The slot width has been

chosen to 2s = 0.4 mm. Measuring the diode impedance in

a bilateral fin-line of equal slot width yields the input data

of the design procedure referred to the diode plane.

2.. = 0.19+ jO.15, ZOff = – j6.53 at fb= 28 GHz, ZOn =
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Fig. 6. Slot pattern and equivalent circuit of a switch with two p-i-n
diodes 7401 (Microwave Associates).
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Fig. 7. Performance of the switch from Fig. 6. Solid lines: hybrid
fin-line circuit. Dashed-dotted lines: all unilateral fin-line, diodes quarter
of a wavelength apart.

0.31 +j0.89, ZOff=0.45–jl.02 at~a =38 GHz. Neglect-

ing the real parts, the length of each section has to tune out

.ZO~.One recognizes from Fig. 4(a) that the shunt reactance

XP of the unloaded section shows a broad minimum versus

the length 1. It is hence reasonable to start with a guessed

XP = 0.7 taken from the minimum range. The total shunt

reactance of the loaded section being known, the condition

for series resonance can be evaluated for X,C. This fixes 1 so

that the choice for XP can be checked. Repeating this cycle

one obtains 11= 2.2 mm; 12= 1.6 mm. To simplify the

following calculations, the frequency dependence of the

equivalent circuit elements will be neglected. They are

calculated at the center frequency 32 GHz: jX,C1 = – 0.25,

jXP, = 0,8, jX,Cz = – 0.784, jXP2 = 0.75. Then the condition

for maximally flat response in the transmission state can be

evaluated yielding a net length for the unilateral fin-line

between the mounting sections of 4.0 mm.
The performance of the realized switch is shown in Fig.

7. These results have been obtained without any modifica-

tion of the calculated slot pattern and without any adjust-

ment. The isolation is much better than for a simple switch

with the two diodes mounted a quarter of a wavelength

apart in a unilateral fin-line. The isolation is about 19 dB,

the insertion loss less than 2 dB. No efforts have, however,

been undertaken in order to minimize the dissipative losses.

Hence, it can be concluded that hybrid fin-line circuits

offer new potentials to circuit design.

V. CONCLUSIONS

Using a modal analysis, cascaded transitions between

unilateral and bilateral fin-lines have been investigated.

These structures show a unique feature: a capactive instead

of an inductive series reactance of the equivalent T-circuit.

This cannot be obtained with any other known discontinu-

ity in fin-lines. It is illustrated that this new degree of

freedom can advantageously be utilized in the design of

broad-band switches. The isolation obtained with two p-i-n

diodes is nearly the same as has as yet been achieved with

three diodes. Moreover, there are practical advantages in

that a semiconductor device mount can easily be modified

without affecting the device itself. Hence, the combination

of unilateral and bilateral fin-lines seems to be an interest-

ing alternative to conventional notch and strip patterns.

Other applications like filters and FET mounts are also

imaginable.

APPENDIX I

The unified calculation of the hybrid eigenmodes will

only briefly be sketched because it has recently been de-

scribed elsewhere [4] for the bilateral fin-line. Hence, we

will complete those derivations by treating the unilateral

fin-line case. The notation is the same as in [4].

The fin-line cross section is shown in Fig. 8. The slot

width is 2s = d, – dz. Because of symmetry an electric wall

(e.w.) maybe assumed on the x-axis. The fields are derived

from the EX- and HX-components which must satisfy the

Hehnholtz equation.

The transverse electric field components are written

~=o

~=1

~=o

(Al)

with

(A2)

kO means free-space wavenumber, ~ propagation constant.

Ux and UY are unit vectors in the x- and y-directions,

respectively. For the magnetic field components, one has

similarly
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‘3 2 ‘1

Fig. 8. Cross section of a unilateral fin-line (e.w. means electric wall).

(A3)

The expansion coefficients are related via [4, eqs. (B4)]. In

addition,

Matching the tangential field components at the various

interfaces yields equations (B5) of [4] and,

(~w = & – an
n —cosiimdsinii, (a– d)

&“

sincl.dcosil. (a- d)—
c, )

—
—~sinii.dsinti. (a– d)

n )

(B~2) = B~3) sin ii. ( a – d ) cos d~d

+ d)sind.d
)

–sintim(a-d)sind~d
)

Aj3J=–A~l)sin~fi(a-d)

/(
cos2&.dsin@H(a– d)+~sin2&. dcostin(a– d)

i-n )

~J3)=–B~])sin~fi(a-d)

/(

—

)
cos2ci~dsinii~(a – d)+~sin2ti.dcos il, (a – d) .

n

(A5)

The remaining expansion coefficients are expressed in terms

of the slot field components EY( y ) and E=(y) after Fourier

transforming all field components and boundary condi-

tions with respect toy. The results are given in [4, eqs. (B6)

and (B7)]. The problem of finding the EM field distribu-

tion has thus been reduced to determining the slot fields.

This is solved by applying Ritz-Galerkin’s method. The

procedure has been carried through in [3] and in [4, ap-

pendix B] to which the reader @ referred.’

APPENDIX II

The integrals appearing in (4) are solved by inserting the

transverse field configurations given in Appendix I. One

obtains

I .
alb]

f
Zaz X hbl “U, dx dy

(a, b)

=: m
X{[(

an A(#@\) + A:3)@:)
)

~=o

- Wn(ww - Bw’q]

sin(ti~~i ‘&nbj)(a:d;a

2(Enai – ‘.b~)

+ [~n(A:~M;~) + A:~M;;) )

+ V.(B:~S$:) + BSW)]

sin ( ~~ai + &~bJ)(a-d)

2(%.1 + ‘nbJ )

+ [7?2% ( ~%~;? + A–L, ~%))

(A6)

- [T12%(A:j~%) -zi?ti(?) n

(2) – @zz~(22)]
+@&sna

sin(d.a, + d.,,) d

(tinai + %b,) 1

{

1, for @.bj real
~, =

–1, for ii~bj imaginary,

(
dn = ;’

forn=O

> forn*O

{

1, for d~b, real
q2 z

–1, for (i.b~ imaginary,

(1, forn=O
‘n 2, forn=O -

(A7)
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Also

; 5 {[w’?’ +l~:’)l’)+nlcn(ls:’)l’.—
~=o

+ [q2i3n(IA:2)12+IA–j2)12)+En(lS:2)12+l~:’)l’)].d

- [q’%w’)1’ -Ix’w)-%(wv

sin 26n d

-Isj’y)]” Qfin

)

(A8)

)1
sin ( ti~i — Eej )(a-d)

+ B(3),S(3) .
naJ nai

2(ani – @ni)

)1
sin ( ti~i + tin j )(a-d)

+ B;;;S::: .
2(tini + Gnj )

)1
“ )dsin(d~~ — %j _ ~ A(z) ~(’)

+ ~(’)~(’) .
naj nai [(

(&ni - tinj) M ..i ?lczj

sin(d.i + &.j) d

1(&ni+&nj) “
(A1O)

Some of the subscripts in (A6)-(AIO) have been omitted if

they were not necessary for a unique characterization. The

integral Fat is used later for normalization. The infinite

series in the above formulas should be truncated at N =

Mb/s in order to take the edge condition accurately into

account [6]. M is the number of components used in the

system of basis functions. We have chosen M = 4.
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Modal Solutions of Active Dielectric Waveguides
by Approximate Methods

A. LINZ, MEMBER, IEEE, AND J. K. BUTLER, SENIOR MEMBER

Abstract —Approximate methods are used to obtain tbe modal properties

of stripe-contact semiconductor injection lasers using a planar three-layer

wavegnide model. The centraf active layer has a dielectric constant that

varies smootbty afong the direction parallel to the heterojunction boundaries.

The complex dielectric constant under the stripe contact is dependent on

the gain and approaches a constant vahre at large lateral distances. The two

methods are compared in terms of their modaf propagation constants. An
application of the effective index method facilitates a physical understand-

ing of dielectric waveguide modes as well as providhg an efficient calcula-

tion procedure.

I. INTRODUCTION

A NALYSIS OF mode propagation in dielectric wave-

guides with a spatially varying refractive index has

been the subject of several papers [ 1]-[3]. Typically, the

variation of the dielectric constant with distance has been

approximated with a parabolic profile [1], .[2] or a function

of the fOrm K = – K. + K3 tanh2(x/xO) [3]. Both approxi-

mations have the disadvantage that the value of K goes to

infinity at large distances from the point x = O, which

corresponds to the axis of lateral symmetry of the struc-

ture. In the case of a semiconductor laser, this corresponds

to the region below the center of the contact stripe. Another

approximation that eliminates this disadvantage is the use

of a function of the form [4]

(1)K = KS + hr/cosh2(x/xO)

to describe the variation of IC.This is in closer correspon-

dence with the physical situation, since K now acquires the

Vahte KS for x >> XO. Even if this particular form of vari-

ation of K does not describe the actual variation very

closely, it retains the most important features, and leads to

equations with known solutions. The disadvantage in this

case is the fact that the field solutions consist of a finite

(possibly empty) set of confined trapped modes, an infinite
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set of discrete, diverging “leaky” modes, and a continuum

of solutions that will be designated as “radiation” modes,

as opposed to an infinite set of discrete trapped modes

only, as in the parabolic and tanh2(x/x0 ) profiles. Mode

analysis is a two-dimensional problem, since the refractive

index varies in both lateral (x) and transverse (y) direc-

tions. Therefore, numerical or approximate methods need

to be applied. The most popular and effective approxima-

tion method is the “effective-index” solution, whereby the

two-dimensional problem is reduced to an equivalent, one-

dimensional one [2], [4]–[8]. Numerical methods have also

been developed. For example, in [1] the parabolic variation

is used. Maxwell’s equations are solved both for the active

layer and the confining layers, and then superposition is

applied to both types of solutions to form a general expres-

sion for the field. These solutions and their derivatives are

matched at the boundaries of the active layer, yielding an

infinite system of linear homogeneous equations, whose

solutions, numerically obtained, are the expansion coeffi-

cients for the mode in terms of the eigenfunctions of the

active layer problem. Of course, direct numerical integra-

tion of the two-dimensional wave equation is possible, but

the computation times are long compared to those required

by the algorithm discussed in this paper.

For the type of variation considered here, a general field

in the active layer must be expressed as a superposition of

the few confined discrete modes plus an integral over the

continuum. Leaky modes cannot be included in the expan-

sion if the field is to decrease to zero for large distances

from the stripe.

Direct application of the numerical method used in [1]

results in a finite set of linear equations (due to the finite

number of trapped modes) coupled with an integral equa-

tion (due to integral over the continuum). For the case in

which only one trapped mode exists (the fundamental

mode), an integral equation results, which can in principle

be solved. However, these cases will be seen to correspond

to structures with net modal loss or low gains very sensitive
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