Klaus Schiinemann (M’77) was born in
Braunschweig, West Germany, on Jupe 17, 1939.
He received the master’s degree in electrical
engineering (Dipl.-Ing.) and his doctorate of en-
gineering (Dr.-Ing.) from the Technische Uni-
versitat Braunschweig, West Germany, in 1965
and 1970, respectively.

From 1965 to 1970 he was a Research Assis-
tant at the Department of Electrical Engineering
of the Technical University Braunschweig (In-
stitut for Hochfrequenztechnik), where he was
engaged in investigations on frequency multiplication and on diode mod-

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-30, NO. 12, DECEMBER 1982

elling for switching applications. From 1970 to 1971 he worked for Valvo
GmbH of Hamburg, West Germany, in the area of high-power, high-sta-
ble, solid-state oscillators. Since 1972, he has been back with the Institut
fur Hochfrequenztechnik (Electrical Engineering Department of the Tech-
nical University Braunschweig), where he has been involved with inves-
tigations on high-speed modulators for PCM communication systems and
on amplification and noise in solid-state oscillators. He is now a Professor
in the Electrical Engineering Department and his current research inter-
ests are primarily concerned with new technologies for microwave in-
tegrated circuits, such as fin-line and waveguide-below-cutoff techniques,
and with transport phenomena in submicron structures.

Hybrid Fin-Line Matching Structures
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Abstract —Two transitions between unilateral and bilateral fin-line
mounted back to back show unique features for impedance transformation,
The series reactances of the equivalent T-circuit are theoretically shown to
be capacitive. This is exploited by designing a broad-band switch with two
p-i-n diodes. Its isolation is about 20 dB throughout the Kq-band.

I. INTRODUCTION

'HE BASIC building blocks of fin-line circuits are
various discontinuities in the slot width. Impedance
transformation is usually performed with either one or two
steps in the slot width [1]. With two cascaded steps one can
generate cither a notch or a strip. Almost all known
components are realized in this way. These structures can
be analyzed by combining an eigenmode with a modal
analysis [2]. The procedure has been carried through in [1].
We will apply this method here to new configurations.
The structures for impedance transformation to be de-
scribed show both electrical and practical advantages over
the known ones. Their slot patterns are sketched in Fig. 1.
These structures consist of two cascaded transitions be-
tween unilateral and bilateral fin-lines of equal slot widths.
The slot may be located either symmetrically or unsymmet-
rically with respect to the waveguide axis. A large range of
impedances can be generated by varying two geometrical
parameters: the common slot width 25 and the length 2/ of
the middle section. Such a line section can therefore be
used 1n either of two ways: as an impedance transformer or
as a semiconductor device mount. In the latter application,
the circuit patterns show a practical advantage over con-
ventional ones. While the circuit at the front side which
contains the semiconductor devices is protected against
damage, one can conveniently alter the transforming sec-
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Fig. 1. Slot patterns of transitions between unilateral and bilateral
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tion on the back side of the substrate in order to optimize
performance. In addition, there are, however, even electri-
cal advantages over the usual notch and strip patterns,
which will be derived in the following.

II. MODAL ANALYSIS

In order to analyze the structures shown in Fig. 1, one
must know both the propagation constants and the field
distributions of the hybrid eigenmodes of unilateral and
bilateral fin-lines. The problem has been solved by-a num-
ber of authors. We have adopted the spectral-domain
technique presented, e.g., in [3] and modified it to de-
termine the eigenmodes of both unilateral and bilateral
fin-line in a unified form. The unilateral fin-line case is
treated in Appendix I, while the results for the bilateral
fin-line will be presented elsewhere [4]. The notation is the
same for both cases. The key to an efficient eigenmode
evaluation is a suitable choice of the system of basis
functions into which the slot fields must be expanded. This
has been discussed in [3]. We have used a fifth-order
polynomial modified by a square-root term in order to take
the edge condition correctly into account. Thus it was
possible to calculate up to 30 eigenmodes with sufficient
accuracy. :

The modal analysis for computing the characteristics of
an abrupt transition between a bilateral and a unilateral
fin-line shall be briefly described (compare also to [5]). As

0018-9480 /82 /1200-2132800.75 ©1982 IEEE



EL HENNAWY AND SCHUNEMANN: HYBRID FIN-LINE MATCHING STRUCTURES

shown in the slot patterns of Fig. 1, both the slot widths
and the location of the slot above the broad wall of the
waveguide are assumed to stay constant at both sides of
the junction. The electric and magnetic fields of the ith
eigenmode are written as

+ v,z

a,&(x, y)e
a;h;(x, y)et ™

e,(x, y;z)=

h(x,p,z)= (1)
with & and A, the transverse vector functions of the electric
and magnetic field, respectively. Denoting the transverse
field distribution of the left waveguide a at the junction
(z=0)by E , and expanding it in terms of the eigen-
modes of that wavegu1de reads

o0
E,=(1+p)ag,+ X az,
1=2
[v.]
3 ah,.

i=2

E=(1‘P)alﬁal_ (2)

Similarly, one writes for waveguide b
_ o0
E,= Z b (eb,+ Z kebk)
j=1

AieLofh- Euh) 0

p means reflection coefficient of the incident mode (i =1),
5, are the scattering coefficients of the next discontinuity
located at z > 0 in waveguide b.

In the following, we will address the so-called ‘boundary
reduction problem’ (terminology taken from [2]), i.c., the
cross section of waveguide a is larger than that of wave-
guide b. In our case, the former is a unilateral and the
latter a bilateral fin-line. The boundary enlargement prob-
lem can be treated in the same way as described below, if
the subscripts a and b in (2) and (3) are interchanged.

Equations (2) and (3) are used to formulate the boundary
conditions at the junction, which are manipulated in the
following way. The cross product of the electric field in (2)
with %, is taken and integrated over the cross section of
waveguide a. For the unknown field on the left-hand side,
E, is inserted from (3). Similarly, the cross product of the
magnetic field in (2) with &, is taken and integrated over
the cross section of waveguide b. For the unknown field on
the left-hand side, H, is inserted from (3). One obtains

(1+p)a1f

(@)

o0
+Eaif €
= a

€ X Eam' uz dXdy

X Byt dx dy

by, u, dx dy

( (b)eb’ .
S, o

Ly Uy X dy” (4a)
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(l_p)alf ébn X h_al'udedy
(&)

- a,f(b)ébnxh—a,-uzdxdy
i=2
w —
-y [bj(f(b)éb,,xhbj-uzdxdy
=1

(4b)

[oe]
-2 sjk_/ 5anEbk'“dedY)]'
k=1 (®)

u, means unit vector in the z-direction. Because E, exists
on the common aperture only and vanishes elsewhere, the
integrals on the right-hand side of (4a) must only be taken
over the cross section of waveguide ‘b°. These integrals can
be solved once the eigenmodes have been formulated. The
solutions are listed in Appendix II for the general case of a
junction between two unilateral fin-lines. If a junction
between a unilateral and a bilateral fin-line is to be treated,
one must only omit some of the expansion coefficients.
(AP =8P =BP=MP=0 for an unsymmetrical mode
in bilateral fin-line, 4® = §® = B® = M® = 0 for a sym-
metrical mode.)

In order to solve (4) for the amplitudes of the excited
modes, one must first determine the scattering coefficients
s,x- For a single transition, waveguide b may be assumed to
be terminated in a matched load: s5; = 0. For two transi-
tions in cascade, we can take advantage of the symmetry of
the structure with respect to the plane z = /. The equivalent
circuit can then be found from both an even and an odd
excitation of both ports, so that s;, =0 for j + k and

Sjj=(l“ybj)/(1+ij)=iexP(‘zJBb,l)- (5)
Vp, is the normalized input admittance of the jth mode in
waveguide b measured at z = 0, and B,, means propagation
constant of this mode.

We are now in a position to solve the system of equa-
tions (4). It is convenient to normalize the wave amplitudes
on a,. Setting

=L,/ ( Fbj) (6)

with the I’s and F’s taken from Appendix II we obtain for
the case that the exciting wave a, impinges on waveguide b
from waveguide a

all= at/ala

b=b/a, I

amby

L

L
pIalbn + Z al azbn Z b;(1+sjj)11;jbn ==
1=2 =1

’
Ialbn

™)

L N
pItgmal + Z I’Il:mal + Z b_/’(l - Sjj) (;mbj = I(;mal'
0= =1

These relations are valid for the boundary enlargement
problem, i.e., that waveguide a is a bilateral and waveguide
b a unilateral fin-line. If a wave a, impinges from b on aq,
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Fig. 2. Equivalent circuit of a single transition (port 1= bilateral, port
2 = unilateral fin-line).

one obtains for the boundary reduction problem

L L
pIélbm + Z azllgzbm - Z b;(l + Sjj) c’zjbm == Ilglbm
1=2 =1
L L
pI;nbl + Z at/Iz/znbt + Z bjl(l—-sjj)lt/ma] zlénbl' (8)
1=2 =1

The infinite series are truncated at i = j = L, thus taking L
modes in each waveguide into account. Then (7) or (8)
generate 2 L linear equations for 1+ (L — 1)+ L unknowns.

A single transition from unilateral to bilateral fin-line is
characterized by an equivalent circuit shown in Fig. 2
whose elements can be computed from the input admit-
tances at both ports. Two cascaded transitions are rep-
resented by a T-equivalent circuit with series reactances X,
and shunt reactances (X, — X,.)/2. (Subscripts sc denote
a short circuit, subscripts oc an open circuit at the symme-
try plane z =/.)

I1I. PERFORMANCE OF TRANSITIONS

The modal analysis has been applied to a single transi-
tion between unilateral and bilateral fin-line and to the
cascaded transitions sketched in Fig. 1. Some results for
the elements of the equivalent circuit of a single transition
(Fig. 2) are shown in Fig. 3. (The turns ratio of the ideal
impedance transformer has been omitted because it is very
close to unity.) The general shape of the three remaining
elements (note that subscript 1 refers to the bilateral fin-line
port) can be explained by assuming an electric field di-
rected perpendicularly through the dielectric substrate from
front to back fin of the bilateral fin-line. This field can of
course exist only in the immediate vicinity of the transition
between the two fin-lines. For larger slot widths (2s), the
substrate thickness (2d4) is much smaller than (2s5). Hence,
a capacitive series reactance X, appears in the equivalent
circuit. The shunt susceptance B is small because the slot
width approaches the waveguide height (2b). The electric
field concentration in the slot increases with decreasing
(2s). Hence, B must increase monotonically and X; must
increase, too. Finally, X, becomes inductive because of an
increasing magnetic field concentration which is due to a
surface current filament on the transversely oriented fin
edge of the bilateral fin-line.

The most important result is that there may exist a
capacitive series reactance. It will be shown below that the
potentials for impedance transformation in fin-lines will be
largely amplified by this.

The equivalent circuit elements of two cascaded transi-
tions are shown in Fig. 4 versus the length of the middle
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Fig. 3. Elements of the equivalent circuit of a single transition (Fig. 2)

versus slot width (2s5) normalized against waveguide height (25). The

elements are normalized against the wave impedance of the adjacent

port. (Frequency 30 GHz, WR-28 wavegnide with 2a=7.112 mm,

2b=13.556 mm, symmetrically located slot of width 2s, RT-duroid

5880 substrate of thickness 2d =0.254 mm and relative dielectric
constant €, = 2.22.)
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Fig. 4 (a) Elements of the equivalent T-circuit of a section of bilateral
fin-line (length 2/) embedded into a unilateral fin-line. The elements
are normalized against the wave impedance of the unilateral fin-line. Ay
means free-space wavelength. (Parameters as 1n Fig. 3 with 25 =0.4
mm.) (b) Elements of the equivalent T-circuit of a section of unilateral
fin-line embedded into a bilateral fin-line. (Normalization against bi-
lateral fin-line impedance; parameters as in Fig. 4(a).)

section. The slot width is relatively small: s = 0.2 mm. The
shape of the curves can be explained by cascading the
equivalent circuits of two single transitions. (They have,
however, been computed by taking higher order mode
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(a) T-circuit clements as in Fig. 4(a) with 25 =1.0 mm. (b)
T-circuit elements as in Fig. 4(b) with 25 =1.0 mm.

Fig. 5.

coupling into account.) A significant feature is the parallel
resonant behavior of the series reactance for small lengths
{, which can be explained if the two cascaded transitions
are separately regarded (i.e., if higher order mode coupling
between them is neglected). The series reactance is calcu-
lated for odd excitation so that one port of the equivalent
circuit of Fig. 2 is terminated in a short-circuited transmis-
sion line of length /. Hence, the parallel resonant behavior
of X, is due to B resonating with X; and the input
reactance of the transmission line.

The series reactance is capacitive for larger lengths /.
This is of great importance for circuit design because there
is no other discontinuity known showing a capacitive series
reactance. (Both notch and strip show an inductive series
reactance [1].) This unique feature of a double transition
between unilateral and bilateral fin-line offers an interest-
ing alternative in the design of p-i-n-diode switches as will
be illustrated below. It can, however, be observed only for
small slot widths. The series reactance is inductive, if s
exceeds a certain limit. This is illustrated by the results
shown in Fig. 5. Instead of a parallel resonance, X, now
shows series-resonant behavior. This can again be ex-
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plained by means of the simplified equivalent circuit. The
shunt susceptance B of a single transition can now be
neglected (compare with Fig. 3!), so that X is in series with
the short-circuited transmission line of length / (odd excita-
tion). Hence, X, models a series circuit. The shunt element
X, is, however, always capacitive.

IV. DESIGN OF A BROAD-BAND SwiTCH

The unique characteristic of a section of bilateral fin-line
embedded into a unilateral fin-line shall now be utilized to
design a broad-band switch with two p-i-n diodes. The
diodes are usually bonded across a narrow fin-line slot [7]
within a distance of about a quarter of a wavelength in
order to obtain broad-band performance. Then one needs
three diodes in order to guarantee 20-dB isolation over a
waveguide band [7]. Using the matching structures dis-
cussed above will, however, reduce the number of diodes
for nearly the same performance to 2.

A p-i-n diode can approximately be characterized by its
package inductance in on-state and by its i-layer capaci-
tance shunted by the package capacitance in off-state. The
on-state of the diode normally corresponds to the isolation
state of the switch (diode mounted in shunt to the
transmission line). Hence, the package inductance must be
carefully tuned in order to enhance isolation. Guidelines
for designing a broad-band switch with two p-i-n diodes in
shunt are derived in detail in [8]. Both diodes should be
about a quarter of a wavelength spaced. Broad-band per-
formance demands to compensate for the package induc-
tances at two different frequencies f, and f,, which are
related to the upper and lower corner frequencies f,, f, via

(8]
\/(’]#2‘)4_“’1}’2)2}

The two sections of bilateral fin-line which are used to tune
the diodes in their on-state must, hence, show different
lengths. The slot pattern of the switch and its equivalent
circuit are sketched in Fig. 6. One recognizes that a capaci-
tive series reactance X, is necessary in order to fulfill the
said tuning condition. (Hence, neither a notch nor a strip
can be used instead.) Following the design rules given in
[8], the equivalent circuit should present a bandpass char-
acteristic with, e.g., a maximally flat response in the trans-
mission state. This is achieved for X = 2B with X and B
defined in Fig. 6. Thus, the length of the unilateral fin-line
between both diode mounts is fixed. In the isolation state,
series resonance is claimed at f, and f,, respectively. This
determines the lengths of the two mounting sections. The
common slot width should correspond to the physical size
of the diode package.

We have realized a Ka-band switch with two p-i-n diodes
4701 (Microwave Associates). The slot width has been
chosen to 25 = 0.4 mm. Measuring the diode impedance in
a bilateral fin-line of equal slot width yields the input data
of the design procedure referred to the diode plane.

Z,,=0.194 j0.15, Z ;= — j6.53 at f, =28 GHz, Z =

1/2
+

]

fa,b= 2

©)
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Fig. 6. Slot pattern and equivalent circuit of a switch with two p-i-n
diodes 7401 (Microwave Associates).
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Fig. 7. Performance of the switch from Fig. 6. Solid lines: hybrid
fin-line circuit. Dashed-dotted lines: all unilateral fin-line, diodes quarter
of a wavelength apart.

031+ j0.89, Z 4 =0.45— j1.02 at f, = 38 GHz. Neglect-
ing the real parts, the length of each section has to tune out
Z_.. One recognizes from Fig. 4(a) that the shunt reactance
X, of the unloaded section shows a broad minimum versus
the length /. It is hence reasonable to start with a guessed
X, =0.7 taken from the minimum range. The total shunt
reactance of the loaded section being known, the condition
for series resonance can be evaluated for X, . This fixes / so
that the choice for X, can be checked. Repeating this cycle
one obtains /, =2.2 mm; /,=1.6 mm. To simplify the
following calculations, the frequency dependence of the
equivalent circuit elements will be neglected. They are

+ calculated at the center frequency 32 GHz: jX, = —0.25,
JX,1 =038, jX ., = —0.784, jX , = 0.75. Then the condition
for maximally flat response in the transmission state can be
evaluated yielding a net length for the unilateral fin-line
between the mounting sections of 4.0 mm.

The performance of the realized switch is shown in Fig.
7. These results have been obtained without any modifica-
tion of the calculated slot pattern and without any adjust-
ment. The isolation is much better than for a simple switch
with the two diodes mounted a quarter of a wavelength
apart in a unilateral fin-line. The isolation is about 19 dB,
the insertion loss less than 2 dB. No efforts have, however,
been undertaken in order to minimize the dissipative losses.
Hence, it can be concluded that hybrid fin-line circuits
offer new potentials to circuit design.

V. . CONCLUSIONS

Using a modal analysis, cascaded transitions between
unilateral and bilateral fin-lines have been investigated.
These structures show a unique feature: a capactive instead
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of an inductive series reactance of the equivalent T-circuit.
This cannot be obtained with any other known discontinu-
ity in fin-lines. It is illustrated that this new degree of
freedom can advantageously be utilized in the design of
broad-band switches. The isolation obtained with two p-i-n
diodes is nearly the same as has as yet been achieved with
three diodes. Moreover, there are practical advantages in
that a semiconductor device mount can easily be modified
without affecting the device itself. Hence, the combination
of unilateral and bilateral fin-lines seems to be an interest-
ing alternative to conventional notch and strip patterns.
Other applications like filters and FET mounts are also
imaginable.

APPENDIX I

The unified calculation of the hybrid eigenmodes will
only briefly be sketched because it has. recently been de-
scribed elsewhere [4] for the bilateral fin-line. Hence, we
will complete those derivations by treating the unilateral
fin-line case. The notation is the same as in [4].

The fin-line cross section is shown in Fig. 8. The slot
width is 25 = d, — d,. Because of symmetry an electric wall
(e.w.) may be assumed on the x-axis. The fields are derived
from the £ - and H -components which must satisfy the
Helmbholtz equation.

The transverse electric field components are written

o0
EM=3 AVcosa,(x—a)sina,y u,
n=1

oo}
+ 2 SVsina,(x —a)cosa, y-u,
n=0

o0
EQP =3 A®cosa,(x+a)sina,y-u

n=1

pe

[e 0]
+ ), SPsina,(x +a)cosa,y-u,
n=0

e )
EP =Y (APsind,xsina,y + 4,Pcos &, xsina,y ) u,
n=1

o]
+ X (8Pcosd,xcosa,y + SPsind,xcosa, y)-u,
n=0

(A1)
with

— _ 2 _p2_ 2 v — 2_p2_ 2 —
a,=yky— B —a,, a,=yeky—B —a,, a,=na/b.

(A2)

k, means free-space wavenumber, 8 propagation constant.
u, and u, are unit vectors in the x- and y-directions,
respectively. For the magnetic field components, one has
similarly

o0
HP =Y (BYsina,(x—a)cosa,y)-u,
n=20
o0
+ Y (M®cosa,(x—a)sina,y)-u,
n=1
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Fig. 8. Cross section of a unilateral fin-line (e.w. means electric wall).

0
HP =Y (B®sin@,(x+a)cosa,y)-u,
n=0

+ Z (MPcosa,(x +a)sina, y)-u,

n=1

(B@cos@,xcosa,y + BPsind,xcosa,y)-u,

(M®sind,xsina,y + MPcos &, xsina,y)-u,.

(A3)

The expansion coefficients are related via [4, eqs. (B4)]. In
addition,

(- 4,%a,d, — jkoBB, @) /(B2 +a2)
S(3)=( Af?)(x a, —]kOﬂB(3))/(/3‘2+an)

( B—n(z)a &, — jkoBe, A(Z))/(,B2+aﬁ) '

( B(S)a a, — jk, ,BAG))/(,82+aﬁ).

n

(A4)

Matching the tangential field components at the various
interfaces yields equations (BS) of [4] and

2 cosd,dsin&,(a—d)

AD = A(z)(

€

_ sind,dcos&,(a—d) )
cosd,dcosa,(a—d)

€

AO =4O (

~ 2sing,dsind, (a— d))

n

B®=B® (sin&n(a —d)cosé&,d

+ %cos a,(a— d)sindnd)

n
B =8O 2 cosa,deosa,(a—d)
1= B S cosd,dcosa,(a
n

—sina,(a— d)sin&nd)

AP =—AVsina,(a—d)

/(cos2a dsin@ (a—d)+ = “sin2&,dcos & (a——d))

r n
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B®=—BDsina,(a—d)
a
/(cosZ&ndsin(Yn(a —d)+ :x~—"sin2dndcos a,(a—d)|.

(A5)

The remaining expansion coefficients are expressed in terms
of the slot field components E,(y) and E,(y) after Fourier
transforming all field components and boundary condi-
tions with respect to y. The results are given in [4, egs. (B6)
and (B7)]. The problem of finding the EM field distribu-
tion has thus been reduced to determining the slot fields.
This is solved by applying Ritz—Galerkin’s method. The
procedure has been carried through in [3] and in [4, ap-
pendix B] to which the reader is referred.’

APPENDIX 11

The integrals appearing in (4) are solved by inserting the
transverse field configurations given in Appendix I. One
obtains

Lo, f( b)ea, X by, u,dx dy
a,
= b - {[5 (A(I)M(l) + A(3)M(3))
2
n=0
—me,(BYSLY ~ BRSY)]
Sln(anat - Enbj)(a - d)
2(lxntzt - Enbj)

3 3

+[8,(ANMY + 42 M))
1 3 3

+ Me, (Bgtlb)Sr(ta) + szb)Sfta) )]

Sin(anal + &nbj)(a - d)
2(&

nat nbj)

+[n:8,(4ADMP + ADMT)

N (2 N2 Sin(&nat - nb_/) d
+ En(Ber)Sn(a) + Er(tb)gr(m))] ~ ~
' (anat nbj)
—[18, (42 MP - aRH3)
+e,(BRSZ - BRSA)]
sm & &, )d
( nat bj) } (A6)
( Ay ai + anbj)
I, for &, real
= -, for &,,, imaginary,
5 = { 0, forn=20
n 1, forn=0
1, for &,,, real
=, for &,,, imaginary,
1, forn=0
6"{ 2, forn=0" (A7)
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Also

at

F2'=/ €, €4 dx dy
(a,b) ‘

— 8 5 (8,049 +14DP )+ me, (S0P
2 n n
n=0

HSOP)]- S5 + (5,40 P +1ADP) e,

.\ sin2a&,(a—d)
(SO +ISPP)]- 4,
+[18,( AP +14 P12) + 6, (SO +ISP@1?)]-d
—[128,(14P 12 — |4 D12) =€, (ISP

sinZdnd}

o) S a9

Iaiai =f éai X h_ai : uz dx dy
(a,b)
b .
=2 X {[8n(A‘n13M,52 + AQI M) —me, (S50 B
n=0

+SQBD)]-ETE + [0, (ANMD + 42MD)

sin2&,(a—d)
Frie, (B2 + BYs)] 22— )
+[ 8, (ADMD + A DMD)— e, (BRSD

+ BRSO -d— [08,(4ARMD - 4 DM D)

— o= sin2d, d
s (B2SR -BRS@)]- Tt a9
n
Iaiaj=f éaiXh_aj'“zdxdy
(a,b)
b - 1 1 3 3 1
— 1
3 zo{[s,,(As,;,-M,saz+A<,,3,-M,sa>j)—en(Bs,z,ss,;,.
"=
sin(a,; — &, )(a—d)
+B® s} ni o ni
Bnajsnal)] 2( (Yn,‘ _ ‘Yn_,'
+[8, (A M, + ADMED, )+, (BD,SSD,
+ B(3>S<3))]. sin(&,, + &,)(a - d)
naj* nai — —
2(0‘ni+anj)
+[5,(ARMEB, + TRIE,) -, (BRS
I sin( &, — &,,)d
BOS@N]. 222 TV 7 [ (4D pr @)
+ naj nal)] (&ni_a..nj [ n( nait naj
~AQME,)+ e, (BESD-B2,S2)]
sin(@&,, +&,,)d
_(aTj} (A10)
ni nj

Some of the subscripts in (A6)—(A10) have been omitted if
they were not necessary for a unique characterization. The
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integral F2 is used later for normalization. The infinite
series in the above formulas should be truncated at N =
Mb /s in order to take the edge condition accurately into
account [6]. M is the number of components used in the
system of basis functions. We have chosen M = 4.
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Modal Solutions of Active Dielectric Waveguides
by Approximate Methods

A. LINZ, MEMBER, IEEE, AND J. K. BUTLER, SENIOR MEMBER

Abstract — Approximate methods are used to obtain the modal properties
of stripe-contact semiconductor injection lasers using a planar three-layer
waveguide model. The central active layer has a dielectric constant that
varies smoothly along the direction parallel to the heterojunction boundaries.
The complex dielectric constant under the stripe contact is dependent on
the gain and approaches a constant value at large lateral distances. The two
methods are compared in terms of their modal propagation constants. An
application of the effective index method facilitates a physical understand-
ing of dielectric waveguide modes as well as providing an efficient calcula-
tion procedure.

I. INTRODUCTION

NALYSIS OF mode propagation in dielectric wave-

guides with a spatially varying refractive index has
been the subject of several papers [1]-[3]. Typically, the
variation of the dielectric constant with distance has been
approximated with a parabolic profile [1], [2] or a function
of the form k = — k, + k4 tanh?(x /x,) [3]. Both approxi-
mations have the disadvantage that the value of « goes to
infinity at large distances from the point x =0, which
corresponds to the axis of lateral symmetry of the struc-
ture. In the case of a semiconductor laser, this corresponds
to the region below the center of the contact stripe. Another
approximation that eliminates this disadvantage is the use
of a function of the form [4]

K =kg+ Ax /cosh®(x /x,) (1)

to describe the variation of «. This is in closer correspon-
dence with the physical situation, since k now acquires the
value kg for x > x,. Even if this particular form of vari-
ation of x does not describe the actual variation very
closely, it retains the most important features, and leads to
equations with known solutions. The disadvantage in this
case is the fact that the field solutions consist of a finite
(possibly empty) set of confined trapped modes, an infinite
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set of discrete, diverging “leaky” modes, and a continuum
of solutions that will be designated as “radiation” modes,
as opposed to an infinite set of discrete trapped modes
only, as in the parabolic and tanh?*(x/x,) profiles. Mode
analysis is a two-dimensional problem, since the refractive
index varies in both lateral (x) and transverse (y) direc-
tions. Therefore, numerical or approximate methods need
to be applied. The most popular and effective approxima-
tion method is the “effective-index” solution, whereby the
two-dimensional problem is reduced to an equivalent, one-
dimensional one [2], [4]~[8]. Numerical methods have also
been developed. For example, in [1] the parabolic variation
is used. Maxwell’s equations are solved both for the active
layer and the confining layers, and then superposition is
applied to both types of solutions to form a general expres-
sion for the field. These solutions and their derivatives are
matched at the boundaries of the active layer, yielding an
infinite system of linear homogeneous equations, whose
solutions, numerically obtained, are the expansion coeffi-
cients for the mode in terms of the eigenfunctions of the
active layer problem. Of course, direct numerical integra-
tion of the two-dimensional wave equation is possible, but
the computation times are long compared to those required
by the algorithm discussed in this paper.

For the type of variation considered here, a general field
in the active layer must be expressed as a superposition of
the few confined discrete modes plus an integral over the
continuum. Leaky modes cannot be included in the expan-
sion if the field is to decrease to zero for large distances
from the stripe.

Direct application of the numerical method used in [1]
results in a finite set of linear equations (due to the finite
number of trapped modes) coupled with an integral equa-
tion (due to integral over the continuum). For the case in
which only one trapped mode exists (the fundamental
mode), an integral equation results, which can in principle
be solved. However, these cases will be seen to correspond
to structures with net modal loss or low gains very sensitive

0018-9480,82,/1200-2139800.75 ©1982 IEEE



